DESCRIPTION

The LM386 is a power amplifier，designed for use in low voltage consumer applications．The gain is internally set to 20 to keep external part count low，but the addition of an external resistor and capacitor between pin 1 and pin 8 will increase the gain to any value up from 20 to 200.

The inputs are ground referenced while the output automatically biases to one－half the supply voltage．The quiescent power drain is only 24 milliwatts when operating from a 6 voltage supply，making the LM386 ideal for battery operation．

FEATURES

－Battery Operation
－Minimum External Parts
－Wide Supply Voltage Range：4V～12V
－Low Quiescent Current Drain：4mA
－Voltage Gains：20～200
－Ground Referenced Input
－Self－Centering Output Quiescent Voltage
－Low Distortion：0．2\％（Av $=20, \mathrm{Vs}=6 \mathrm{~V}, \mathrm{RL}=8 \Omega, \mathrm{Po}=125 \mathrm{~mW}, \mathrm{f}=1 \mathrm{kHz})$
ORDERING INFORMATION

Ordering Number			Package	Packing
Normal	Lead Free	Halogen Free		Tape Reel
LM386－S08－R	LM386L－S08－R	LM386G－S08－R	SOP－8	Tube
LM386－S08－T	LM386L－S08－T	LM386G－S08－T	SOP－8	Tape Reel
LM386－P08－R	LM386L－P08－R	LM386G－P08－R	TSSOP－8	Tube
LM386－P08－T	LM386L－P08－T	LM386G－P08－T	TSSOP－8	Tube
LM386－D08－T	LM386L－D08－T	LM386G－D08－T	DIP－8	

LM386G－D08－T

（1）Packing Type
（2）Package Type
（3）Halogen Free
（1）R：Tape Reel，T：Tube
（2）S08：SOP－8，P08：TSSOP－8，D08：DIP－8
（3）G：Halogen Free，L：Lead Free，Blank：Pb／Sn

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		VCC	15	V
Input Voltage		VIN	$-0.4 \mathrm{~V} \sim+0.4 \mathrm{~V}$	V
Power Dissipation	DIP－8	PD	1250	mW
	SOP－8		600	
	TSSOP－8		600	
Operating Temperature		TOPR	$-20 \sim+85$	${ }^{\circ} \mathrm{C}$
Junction Temperature		TJ	＋125	${ }^{\circ} \mathrm{C}$
Storage Temperature		TSTG	－40～＋150	${ }^{\circ} \mathrm{C}$

Note：1．Absolute maximum ratings are stress ratings only and functional device operation is not implied．The device could be damaged beyond Absolute maximum ratings．

ELECTRICAL CHARACTERISTICS（ $\mathrm{Ta}=25^{\circ} \mathrm{C}$ ，unless otherwise specified．）

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage	Vss		4		12	V
Quiescent Current	lQ	Vss＝6V，VIN＝0		4	8	mA
Output Power	Pout	Vss＝6V，RL＝8 ，THD＝10\％	250	325		mW
		Vss＝9V，RL＝8 ，THD＝10\％	500	700		
Voltage Gain	Gv	Pin 1 and 8 Open		26		dB
		$10 \mu \mathrm{~F}$ from pin 1 to pin 8		46		
Bandwidth	BW	Pin1 and pin 8 open	A	300		kHz
		$10 \mu \mathrm{~F}$ from pin 1 to pin 8	，	60		
Total Harmonic Distortion	THD	$\text { Pout }=125 \mathrm{~mW}, \mathrm{Vs}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \mathrm{RL}=8 \Omega$ pin1 and pin 8 open		0.2		\％
Rejection Ratio	R_{R}	$\mathrm{Vss}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{CBYPASS}=10 \mathrm{uF}$ Pin1 and pin 8 open，Referred to output		50		dB
Input Resistance	RIN			50		k Ω
Input Bias Current	lbias	Vss＝6V Pin2 and pin 3 open		250		nA

APPLICATION NOTES

GAIN CONTROL

To make the LM386 a more versatile amplifier，two pins（1and 8）are provided for gain control．With pins 1 and 8 open the $1.35 \mathrm{k} \Omega$ resistor sets the gain at $20(26 \mathrm{~dB})$ ，If a capacitor is put from pin 1 to 8 ，bypassing the $1.35 \mathrm{k} \Omega$ resistor，the gain will go up to $200(46 \mathrm{~dB})$ ．If a resistor is placed in series with the capacitor，the gain can be set to any value from 20 to 200．Gain control can also be done by capacitively coupling a resistor（or FET）from pin 1 to ground．

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications．For example we can compensate poor speaker bass response by frequency shaping the feedback path．This is done with a series RC from pin 1 to 5 （paralleling the internal $15 \mathrm{k} \Omega$ resistor）．For 6 dB effective bass boost： $\mathrm{R}=15 \mathrm{k} \Omega$ ，the lowest value for good stable operation is $R=10 \mathrm{k} \Omega$ ，if pin 8 is open，If pins 1 and 8 are bypassed then R as low as $2 \mathrm{k} \Omega$ can be used．This restriction is because the amplifier is only compensated for closed－loop gains greater than 9 ．

INPUT BIASING

The schematic shows that both inputs are biased to ground with a $50 \mathrm{k} \Omega$ resistor．The base current of the input transistors is about 250 nA ，so the inputs are at about 12.5 mW when left open．If the dc source resistance driving the LM386 is higher than $250 \mathrm{k} \Omega$ it will contribute very little additional offset（about 2.5 mW at the input， 50 mW at the output）．If the dc source resistance is less than $10 \mathrm{k} \Omega$ ，then shorting the unused input to ground will keep the offset low（about 2.5 mV at the input， 50 mV at the output）．For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground，equal in value to the dc source resistance．Of course all offset problems are eliminated if the input is capacitively coupled．
When using the LM386 with higher gains（bypassing the $1.35 \mathrm{k} \Omega$ resistor between pins 1 and 8 ）it is necessary to bypass the unused input，preventing degradation of gain and possible instabilities．This is done with a $0.1 \mu \mathrm{~F}$ capacitor or a short to ground depending on the dc source resistance on the driven input．

TYPICAL APPLICATIONS CIRCUIT

Amplifier with Gain＝50

AM Kaaıo rower

Amplifier

Note 1：Twist Supply lead and supply ground very tightly．
Note 2：Twist speaker lead and ground very tightly．
Note 3：Ferrite bead in Ferroxcube K5－001－001／3B with 3 turns of wire．
Note 4：R1C1 band limits input signals．
Note 5：All components must be spaced very closely to IC．

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS（cont．）

Distortion vs Output Power

Device Dissipaton vs Output Power－
8Ω Load

Output Power（W）

Device Dissipaton vs Output Power－ 4Ω Load

Device Dissipaton vs Output Power -16Ω Load

Output Power（W）

Package information

SOP－8

Units		INCHES＾			MILLIMETERS		
Dimension Limits	M		NOM	MAX	MIN	NOM	MAX
Number of Pins	P	8			8		
Pitch		0.050			1.27		
Overall Height	A	0.053	0.061	0.069	1.35	1.55	1.75
Molded Package Thickness	A2	0.052	0.056	0.061	1.32	1.42	1.55
Standoff §	A1	0.004	0.007	0.010	0.10	0.18	0.25
Overall Width	E	0.228	0.237	0.244	5.79	6.02	6.20
Molded Package Width	E1	0.146	0.154	0.157	3.71	3.91	3.99
Overall Length	D	0.189	0.193	0.197	4.80	4.90	5.00
Chamfer Distance	h	0.010	0.015	0.020	0.25	0.38	0.51
Foot Length	L	0.019	0.025	0.030	0.48	0.62	0.76
Foot Angle	\varnothing	0	4	8	0	4	8
Lead Thickness	C	0.008	0.009	0.010	0.20	0.23	0.25
Lead Width	B	0.013	0.017	0.020	0.33	0.42	0.51
Mold Draft Angle Top	a	0	12	15	0	12	15
Mold Draft Angle Bottom	B	0	12	15	0	12	15

LM386（A）
LOW VOLTAGE AUDIO POWER AMPLIFIER

TSSOP－8

Units		INCHES＾			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n			8		8	
Pitch	P		0.026			0.65	
Overall Height	A			0.043			1.10
Molded Package Thickness	A2	0.033	0.035	0.037	0.85	0.90	0.95
Standoff §	A1	0.002	0.004	0.006	0.05	0.10	0.15
Overall Width	E	0.246	0.251	0.256	6.25	6.38	6.50
Molded Package Width	E1	0.169	0.173	0.177	4.30	4.40	4.50
Molded Package Length	D	0.114	0.118	0.122	2.90	3.00	3.10
Foot Length	L	0.020	0.024	0.028	0.50	0.60	0.70
Foot Angle	\varnothing	0	4	8	0	4	8
Lead Thickness	C	0.004	0.006	0.008	0.009	0.15	0.20
Lead Width	B	0.007	0.010	0.012	0.19	0.25	0.30
Mold Draft Angle Top	a	0	5	10	0	5	10
Mold Draft Angle Bottom	B	0	5	10	0	5	10

LM386（A）
LOW VOLTAGE AUDIO POWER AMPLIFIER

DIP－8

Units	INCHES＾			MILLIMETERS			
Dimension Limits	n		MIN	NOM	MAX	MIN	NOM
Number of Pins	P		0			8	
Pitch	A	0.140	0.155	0.170	3.65	3.94	4.32
Top to Seating Plane	A2	0.115	0.130	0.145	2.92	3.30	3.68
Molded Package Thickness	A1	0.015			0.38		2.54
Base to Seating Plane	E	0.300	0.313	0.325	7.62	7.94	8.26
Shoulder to Shoulder Width	E1	0.240	0.250	0.260	6.10	6.35	6.60
Molded Package Width	D	0.360	0.373	0.385	9.14	9.46	9.78
Overall Length	L	0.125	0.130	0.135	3.18	3.30	3.43
Tip to Seating Plane	C	0.008	0.012	0.015	0.20	0.29	0.38
Lead Thickness	B1	0.045	0.058	0.070	1.14	1.46	1.78
Upper Lead Width	B	0.14	0.018	0.022	0.36	0.46	0.56
Lower Lead Width	eB	0.310	0.370	0.430	7.87	9.40	10.92
Overall Row Spacing §	a	5	10	15	5	10	15
Mold Draft Angle Top	B	5	10	15	5	10	15
Mold Draft Angle Bottom							

